

Class: XII

INDIAN SCHOOL AL WADI AL KABIR

Practice Exam (2021-2022)-Term -I Sub: MATHEMATICS (041)

Max Marks: 40 Time: 90 minutes

Date: 14.11.2021

General Instructions:

- 1. This question paper contains two parts A, B and C. Each part is compulsory.
- 2. Section A has 20 questions, attempt any 16 out of 20.
- 3. Section B has 20 questions, attempt any 16 out of 20.
- 4. Section C has 10 questions, attempt any 8 out of 10.
- 5. There is no internal choice in any question and no negative marking.
- 6. All questions carry equal marks.

Section A

In this section, attempt any 16 questions out of Questions 1 - 20. Each Question is of 1-mark weightage

Q1.	If s	If $\sin^{-1}x = \sin^{-1}y = \sin^{-1}z = \frac{\pi}{2}$, then the value of $x + y^2 + z^3$ is									
	Α	1	B	2	С	3	D	4			
Q2.	Find the value of k for which the following function is continuous at $x = 2$ $f(x) = \begin{cases} 2x + 1; \ x < 2 \\ k ; \ x = 2 \\ 3x - 1; \ x > 2 \end{cases}$										
	Α	-5	В	5	С	7	D	-7			
Q3.	If A = $\begin{bmatrix} 1 & 2 & x \\ 3 & -1 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} y \\ x \\ 1 \end{bmatrix}$ be such that AB = $\begin{bmatrix} 6 \\ 10 \end{bmatrix}$ then										
	A	y = 3x	B	y = - 3x	С	$\mathbf{y} = \mathbf{x}$	D	y = -x			

Q4.	For what values of x and y the following matrices equal $P = \begin{bmatrix} 2x + 1 & 3y \\ 0 & y^2 - 5y \end{bmatrix} \text{ and } Q = \begin{bmatrix} x + 3 & y^2 + 2 \\ 0 & -6 \end{bmatrix}$									
	A	2, 3	В		3, 4	C		2, 2	D	3, 3
Q5.	Find the intervals in which the function <i>f</i> given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly decreasing									
	A $\left(0,\frac{\pi}{4}\right)$ B			В	$C \qquad \left(\frac{\pi}{4}, \frac{5\pi}{4}\right) \qquad C \qquad \left(\frac{5\pi}{4}, 2\pi\right)$			D none of these		
Q6.	$\begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix} = 27$, then the value of x is									
	Α	-2	В		2	С		-3	D	5
Q7.	Set A has 5 elements and the set B has 6 elements. Then the number of injective functions that can be defined from set A to set B is									
	A 720 B		240	С		120		30		
Q8.	If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 4 & 0 & 0 \end{bmatrix}$, then 3A is equal to									
	A	3 <i>A</i>	В		9 <i>A</i>	С	27 A		D	0
Q9.	Th	e equation of th	e norma	ıl to t	he curve y (1	+ x ²)	= 2 -	– x, where the ta	nge	nt crosses the x axis is
	A	x + 5y = 2	B		5x - y = 10		С	x - 5y = 2	D	5x + y = 10
Q10.	tan	$-1\left[2\cos\left(2\sin^{-1}\right)\right]$	$\left(\frac{1}{2}\right)$ is	equal	to					
	A	$\frac{\pi}{6}$	В		$\frac{\pi}{2}$	C		$\frac{\pi}{3}$	D	$\frac{\pi}{4}$

Q11.	Let us define a relation R in R as aRb if $a \ge b$, then R is									
	Α	an equivalence re	latior	1	B	reflexive, transitive	but	not symmetric		
	С	symmetric, transit	tive b	out not reflexive	D	None of these				
Q12.	If $f'(x)$ is the derivative of the function given by $f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8)$ then $f'(1)$ is equal to									
	Α	100	B	120	С	140 D 0				
Q13.	If A	A, B are symmetric	matı	rices of same order	, ther	AB – BA is a				
	A	Skew symmetric	matri	Х	B	Symmetric matrix				
	C Zero matrix					Identity matrix				
Q14.	Derivative of log $(\log x)^2$ with respect to x is									
	A	$\frac{2}{x \log x}$	B	$\frac{1}{x \log x}$	С	$\frac{-2}{x \log x}$	D	$\frac{-1}{x \log x}$		
Q15.	$A = \begin{bmatrix} cosx & sinx \\ -sinx & cosx \end{bmatrix}$, then the value of x satisfying $0 < x < \frac{\pi}{2}$ when $A + A^{T} = \sqrt{2} I_{2}$ is									
	A	$\frac{\pi}{6}$	B	$\frac{\pi}{2}$	C	$\frac{\pi}{3}$	D	$\frac{\pi}{4}$		
Q16.	Fin	d the point at whic	h the	tangent to the cur	ve y =	$=\sqrt{8x^2+1}$ has its sl	lope	2		
	A	$\left(\frac{1}{8}, \mp \sqrt{2}\right)$	B	$\left(\frac{1}{2\sqrt{2}},\sqrt{2}\right)$	С	$C \qquad \left(\mp \frac{1}{2\sqrt{2}} , \sqrt{2} \right) \qquad \mathbf{D} \qquad \left(\frac{1}{2\sqrt{2}} \right)$		$\left(\frac{1}{2\sqrt{2}}, \mp \sqrt{2}\right)$		
Q17.	Th	e number of all pos	sible	matrices of order	3×3	with each entry 0, 1	or 2	z is:		
	Α	521	В	19386	С	512	D	19683		
Q18.	If y	$y = \sec^{-1}\left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) + s$	sin ⁻¹ ($\frac{\sqrt{x-1}}{\sqrt{x+1}}$, then $\frac{dy}{dx}$ is	equal	to				
	A	1	B	$\frac{\sqrt{x} + 1}{\sqrt{x - 1}}$	С	$\frac{\sqrt{x-1}}{\sqrt{x+1}}$	D	0		

Q19.	If t	If the curve ay $+x^2 = 7$ and $x^3 = y$, cut orthogonally at (1, 1), then the value of 'a' is								
	A	1	В	6	С	-6	D	0		
Q20.	The the	e feasible solution f n the Minimum of 2	or an Z oc	n LPP is shown in curs at	the gi	ven figure. If Z=2x-	7y ł	be the objective function,		
			(d	(4, 10 (4, 10 (0, 8)	0) (6) (6) (5, (.8) .5))) `				
	Α	(4, 10)	В	(0, 0)	С	(0, 8)	D	(6,5)		
In this s	Section B In this section, attempt any 16 questions out of Questions 21 – 40. Each Question is of 1-mark weightage									
Q21.	Let	R be a relation on	the s	et N of natural nur	mbers	denoted by nRm⇔	n di	vides m. Then, R is		
	Α	Reflexive and sym	nmet	ric	B	reflexive, transitive	but	not symmetric		
	С	symmetric, transit	ive t	out not reflexive	D	None of these				
Q22.	If x	$x = \sqrt{a^{sin^{-1}t}}$ and y	r = √	$\sqrt{a^{\cos^{-1}t}}$, then $\frac{dy}{dx}$	is equ	al to				
	A	$\frac{y}{x^2}$	В	$\frac{-y}{x}$	С	$\frac{x}{t^2}$	D	$\frac{-y}{t^2}$		
Q23.	The x +	e maximum value c $y \ge 60, x - 2y \ge 0,$	of the $x \ge 1$	e object function Z 0, $y \ge 0$ is	= 5x	+ 10y subject to the	con	straints $x + 2y \le 120$,		
	A	300	B	400	С	600	D	800		

Q24.	Th	e derivative of <i>tan</i> ⁻	$-1\left(\frac{1}{1}\right)$	$\frac{\sin x}{+\cos x}$) with respec	t to x	is			
	А	$\frac{1}{2}$	B	$\frac{-1}{2}$	С		$\frac{\pi}{2}$	D	$\frac{-\pi}{2}$
Q25.	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, then								
	A	$A^{-1} = \mathbf{B}$	B	$A^{-1} = 6B$	С		$B^{-1} = \mathbf{B}$	D	$B^{-1} = \frac{1}{6} \mathbf{A}$
Q26.	The total revenue in Rupees received from the sale of x units of a product is given by $R(x) = 13x^2 + 26x + 15$, then the marginal revenue when $x = 7$ is								
	A	₹ 208	B	₹ 206	С	₹ 228 D ₹ 2			₹ 200
Q27.	The simplest form of $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)^{-1}$, where $\frac{-\pi}{2} < x < \frac{\pi}{2}$ is								
	A	$\frac{\pi}{4}$ - $\frac{x}{2}$	B	$\frac{\pi}{4} + \frac{x}{2}$	С		$\frac{\pi}{2} + \frac{x}{2}$	D	$\frac{\pi}{2}$
Q28.	If X is square matrix such that $X^2 = X$, then $(I + X)^2 - 4X$ is equal to								
	A	X B I			С		I - X	D	3X
Q29.	The interval in which $y = x^2 e^{-x}$ is increasing is								
	A	(-∞, ∞)	B	(-2, 0)	С		(2,∞)	D	(0, 2)
Q30.	If A	$A = \{p, q, r\}, then th$	e rel	ation which is not	an eq	uival	ence relation or	ı A i	S
	A	{(p, p), (q, q), (r, r)}		B	{(p,	p), (q, q), (r, r),	(p,	q), (q, p)}
	C	$\{(p, p), (q, q), (r, r)\}$), (r,	q), (q, r)}	D	non	e of these		
Q31.	If	$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}, x$	$\neq \frac{\pi}{4}$, and f(x) is contin	nuous	at x	$=\frac{\pi}{4}$, then the value	lue o	of $f\left(\frac{\pi}{4}\right)$ is
	Α	$\frac{1}{2}$	В	$\frac{-1}{2}$		С	$\frac{\pi}{2}$		D $\frac{-\pi}{2}$

Q32.	If $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 5 \\ 1 & 4 & a \end{bmatrix}$ is singular, then the value of a is									
	Α	-6	B	б	С	8	D	0		
Q33.	The linear programming problem minimize $Z=3x+2y$, subject to constraints $x + y \ge 8$, $3x+5y \le 15$, and $x, y \ge 0$, has									
	A (One solution			B	Two solutions				
	C 1	No feasible solution	n		D	Infinitely many solutions				
Q34.	The shortest distance between the line $y - x = 1$ and the curve $x = y^2$ is									
	А	$\frac{\sqrt{3}}{4}$	B	$\frac{3\sqrt{2}}{8}$	С	$\frac{2\sqrt{3}}{8}$	D	$\frac{3\sqrt{2}}{5}$		
Q35.	If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $f(x) = (1 + x)(1 - x)$, then $f(A)$ is									
	A	$-4\begin{bmatrix}1&1\\1&1\end{bmatrix}$	B	$4\begin{bmatrix}1&1\\1&1\end{bmatrix}$	С	$8\begin{bmatrix}1&1\\1&1\end{bmatrix}$	D	$-8\begin{bmatrix}1&1\\1&1\end{bmatrix}$		
Q36.	$\sin\left(2tan^{-1}\frac{1}{3}\right) + \cos\left(tan^{-1}2\sqrt{2}\right)$ is equal to									
	Α	$\frac{-14}{15}$	B	$\frac{15}{14}$	С	$\frac{-15}{14}$	D	$\frac{14}{15}$		
Q37.	If f:	$R \rightarrow R$ is a function	n de	efined as $f(x) = \frac{1}{3}$	1 Cosx ,	$\forall x \in R$, then the rat	nge	of f is,		
	A	(-1, 1)	B	[-2, -1]	С	$\left[\frac{1}{3},1\right]$	D	$\left[\frac{1}{4},\frac{1}{2}\right]$		
Q38.	If A	$=\begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$, then A^2	⁰²¹ i	s equal to						
	A	2 ²⁰²⁰ A	B	2 ²⁰²⁰ I	С	Ι	D	0		
Q39.	A pa whic	rticle moves along th the y-coordinate	g the e is c	curve $6y = x^3 + 2$. changing 8 times as	Find s fast	the points on the cura as the x -coordinate.	ve in	n the first quadrant at		
	A	(11, 11)	B	(11, 4)	С	(4, 11)	D	(4, 4)		

Q40.	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then $A^n + nI$ is equal to									
	A	Ι	В	nA	С	I + nA	D	I - nA		
		In this section, att	empi Ques	Sectio t any 8 questions. tions 46-50 are ba	on C Each ised o	question is of 1-ma n a Case-Study.	rk u	eightage.		
Q41.	Corner points of the feasible region determined by the system of linear constraints are $(0, 3)$, $(1,1)$ and $(3,0)$. Let Z= p x + q y, where p, q > 0. Condition on p and q so that the minimum of Z occurs at $(3,0)$ and $(1,1)$ is									
	A	p=2q	B	$P = \frac{q}{2}$	С	$q = \frac{p}{2}$	D	p=q		
Q42.	If a tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h, k) is parallel to the line $x - y = 4$, then the value of 'k' is									
	A $\frac{-3}{2}$ B $\frac{3}{2}$ C $\frac{-2}{3}$ D $\frac{2}{3}$									
Q43.	A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible									
	Α	9 cm	В	7 cm	С	1 cm	D	3 cm		
Q44.	4. Corner points of the feasible region for an LPP are $(0,2)$, $(3,0)$, $(6,0)$, $(6,8)$ and $(0,5)$. If F=4x+6y be the objective function, then Maximum of F – Minimum of F is equal to									
	A	72	B	60	С	24	D	30		
Q45.	If A	$\mathbf{A} = \begin{bmatrix} 3 & x - \\ 2x + 3 & x + z \end{bmatrix}$	1 2], i	s a symmetric mat	rix, th	en x is equal to				
	A	-3	В	4	С	-4	D	3		

In a park there is a green garden in the shape of rectangle inscribed in a circle of radius 10 m as shown in the given figure.Provide the given figure.Based on the above information answer the following questionsQ46.If 2x and 2y denotes the length and breadth in meters, of the rectangular part, then the relation between the variables isDA $x^2 - y^2 = 10$ B $x^2 + y^2 = 10$ C $x^2 - y^2 = 100$ Q47.The area (A) of green grass, in terms of x, is given byA $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48.The maximum value of A isA 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49.The length of the rectangle, when the area is maximum, is		CASE STUDY QUESTION										
Provide a set of the set o		In sho	a park there is a gre own in the given fig	en g ure.	arden in the shape	of ree	ctangle inscribed in a	i ciro	cle of radius 10 m as			
Based on the above information answer the following questionsQ46.If 2x and 2y denotes the length and breadth in meters, of the rectangular part, then the relation between the variables isA $x^2 - y^2 = 10$ B $x^2 + y^2 = 10$ C $x^2 + y^2 = 100$ D $x^2 - y^2 = 100$ Q47.The area (A) of green grass, in terms of x, is given byA $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48.The maximum value of A isA 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49.The length of the rectangle, when the area is maximum, isD $x^2 \sqrt{100 - x^2}$ D $x^2 \sqrt{100 - x^2}$ D				G	D A		Gravelling path	5				
Q46.If 2x and 2y denotes the relight and breaded in infinitely, of the rectangular part, then the relation between the variables isA $x^2 - y^2 = 10$ B $x^2 + y^2 = 10$ C $x^2 + y^2 = 100$ D $x^2 - y^2 = 100$ Q47.The area (A) of green grass, in terms of x, is given byA $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48.The maximum value of A isA 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49.The length of the rectangle, when the area is maximum, is 20 m $x = 5\sqrt{2} \text{ m}$		If 2x and 2v denotes the length and breadth in meters, of the rectangular part, then the relation										
A $x^2 - y^2 = 10$ B $x^2 + y^2 = 10$ C $x^2 + y^2 = 100$ D $x^2 - y^2 = 100$ Q47. The area (A) of green grass, in terms of x, is given by A $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48. The maximum value of A is A 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49. The length of the rectangle, when the area is maximum, is D $5\sqrt{2}$ m	Q46.	between the variables is										
Q47.The area (A) of green grass, in terms of x, is given byA $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48.The maximum value of A isA 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49.The length of the rectangle, when the area is maximum, isC 20 m D $5\sqrt{2} \text{ m}$		A	$x^2 - y^2 = 10$	В	$x^2 + y^2 = 10$	С	$x^2 + y^2 = 100$	D	$x^2 - y^2 = 100$			
A $2x \sqrt{100 - x^2}$ B $4x \sqrt{100 - x^2}$ C $2x \sqrt{100 + x^2}$ D $4x \sqrt{100 + x^2}$ Q48. The maximum value of A is A 100 m^2 B 200 m^2 C 400 m^2 D $4x \sqrt{100 + x^2}$ Q49. The length of the rectangle, when the area is maximum, is C 20 m D $5\sqrt{2} \text{ m}$	Q47.	The area (A) of green grass, in terms of x, is given by										
Q48. The maximum value of A is A 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49. The length of the rectangle, when the area is maximum, is D $5\sqrt{2} \text{ m}$		A	$2x\sqrt{100 - x^2}$	В	$4x\sqrt{100 - x^2}$	C $2x\sqrt{100 + x^2}$ D $4x\sqrt{100 + x^2}$						
A 100 m^2 B 200 m^2 C 400 m^2 D 1600 m^2 Q49. The length of the rectangle, when the area is maximum, is	Q48.	Th	e maximum value o	of A i	is							
Q49. The length of the rectangle, when the area is maximum, is		A	100 m ²	В	200 m ²	С	C 400 m ² D		1600 m ²			
	Q49.	Th	e length of the recta	ingle	, when the area is	maxi	mum, is					
$\begin{vmatrix} \mathbf{A} & 10\sqrt{2} \text{ m} \\ \mathbf{B} & 20\sqrt{2} \text{ m} \\ \mathbf{C} & 20 \text{ m} \\ \mathbf{D} & 5\sqrt{2} \text{ m} \\ \end{vmatrix}$		A	$10\sqrt{2}$ m	В	$20\sqrt{2}$ m	С	20 m	D	5√2 m			
Q50. The area of the gravelling path is	Q50.	Th	e area of the gravel	ling	path is		·					
A $100(\pi + 2) \text{ m}^2$ B $200(\pi + 2) \text{ m}^2$ C $100(\pi - 2) \text{ m}^2$ D $200(\pi - 2) \text{ m}^2$		A	$100(\pi + 2) \text{ m}^2$	В	$200(\pi + 2) \text{ m}^2$	С	$100(\pi - 2) \text{ m}^2$	D	$200(\pi - 2) \text{ m}^2$			

ANSWERS

Q. No	Option								
1.	С	11.	В	21.	В	31.	A	41	В
2.	В	12.	В	22.	В	32.	В	42	A
3.	A	13.	A	23.	С	33.	С	43	D
4.	С	14.	A	24.	A	34.	В	44	В
5.	В	15.	D	25.	D	35.	A	45	С
6.	С	16.	С	26.	A	36.	D	46	С
7.	A	17.	D	27.	В	37.	D	47	В
8.	С	18.	D	28.	С	38.	A	48	В
9.	В	19.	В	29.	D	39	С	49	A
10.	D	20	A	30.	D	40	С	50	С
